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ABSTRACT 

Discrete  approximations to hyperbolic partial differential equations governing frictionless two-dimensional fluid 
flow are developed in  Cartesian geometry for use over arbitrary  triangular grids. A class of schemes is developed that 
conserves mass, momentum,  and  total energy. The  terms of the governing equations  are also approximated  individually 
and  their  truncation error  is examined. For  test integrations, the schemes are applied t o  an  equilateral  triangular 
(homogeneous) grid on a beta plane. In  one case, the  same scheme is integrated over a square grid for comparison 
between four- and six-point differences. Both second- and  fourth-order schemes arc  integrated  and compared with 
a fine resolution  solution. 

1. INTRODUCTION 
The  spatial scale of many geophysical fluid dynamics 

problems varies greatly over the  domain of interest.  The 
ocean circulation is such  a problem. Western  boundary 
currents  such  as  the Gulf Stream or Kuroshio have a 
smaller scale than  the remaining ocean circulation. An- 
other example is the problem of fronts  in  the  atmosphere, 
where relatively  strong  gradients exist in a narrow band 
with  weak  gradients elsewhere. 

I n  order to study these problems numerically,  a net of 
points must  be defined over the domain. The density of 
the  net  must  be  great enough to resolve the smallest scales 
of interest.  The size and speed of present  computers do 
not allow a uniformly fine grid over the  entire  domain. 
Even if it were practical,  such  a  grid would be inefficient 
since a fine grid  is needed only over a  small part of the 
domain. For efficient use of the  computer, it seems reason- 
able to use the  optimum  grid  density for the spatia.1 scale 
of the expected  solution in each part of the domain.  These 
va.rious density grids must  then  be connected to each  other 
in some manner  and,  in some cases, special difference 
equations  must be designed for use at  the interface. 

If a coarse square grid is joined to a fine square  grid, 
various difficulties can  arise at  the interface. For example, 
if a uniform wave is traveling  parallel to  the  interface,  the 
phase  truncation  error is smaller in  the fine grid than  in  the 
coarse one, and a shearing soon develops in  the wave struc- 
ture.  This numerical  phenomenon is exhibited in  the case 
of a wave on a  sphere by  Gates  and Riegel (1962). If a 
wave is moving in a  direction  perpendicular to  the  inter- 
face, partial reflections might occur which are  due solely to 
the numerical  techniques and  not  to  the physical problem. 

To avoid these problems, a nonhomogeneous triangular 
grid seems ideal. Such  grids  have been used successfully 
for solving elliptic  equations by  the  method of successive 
overrelaxation (Winslow, 1966). They  permit a continuous, 

gradual  transition  from fine to coarse grid  and  permit 
construction of secondary polyhedral grid  areas whose 
sides are common to only two such areas. 

Numerical  integration over a  sphere provides another 
use for  triangular grids. Uniform grids over a  sphere would 
be useful for  atmospheric general circulation models. Quasi- 
homogeneous triangular grids have been defined over a 
sphere by Vestine et al. (1963) and Williamson (1968). 
Sadourny et al. (1968) and Williamson (1968) have 
integrated  the  nondivergent  barotropic  vorticity  equation 
over these spherical grids. 

Masuda (1968) has developed finite-difference schemes 
using the principle developed by Amkawa (1966) for use over 
a homogeneous triangular grid. He shows good results for in- 
tegrations of the nondivergent  barotropic model on a plane. 
Lorenz (1967) has developed a  triangular finite-difference 
approximation  for  a two-level model on a beta plane when 
the governing equations  are written  in  terms of a stream 
function. I n  the following, discrete  approximations to  the 
primitive  equations governing frictionless two-dimensional 
flow are developed for use over arbitrary  triangular grids. 
Cartesian  geometry is assumed for  this  study. The modifi- 
cations necessary for spherical  geometry mill be discussed 
in  another  paper.  Two  approaches  are considered. The first 
deals with  the  invariants of the continuous  equations. A class 
of schemes is developed that conserves mass,  momentum, 
and energy. The second approach  approximates  each  term 
of the governing equations  individually  and examines the 
truncation  error of all the schemes when applied to  a homog- 
eneous grid over a plane. 

Results of test  integrations of these schemes are  then 
presented. The schemes are applied to  an equilateral  trian- 
gular (homogeneous) grid on a beta plane. No  integrations 
over nonhomogeneous grids are performed. The  results of 
the  triangular schemes are  compared  with  results of similar 
schemes applied to a  square  net  and  with  results of integra- 
tions over a fine mesh. 
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2. GOVERNING  EQUATIONS 

The equations considered here  are those for frictionless 
horizontal two-dimensional motion. For the  derivation of 
the difference schemes, the Coriolis term will be neglected. 
Since all  quantities will be defined at  the same grid points, 
the Coriolis term  can be differenced in a  straightforward 
manner. Using vector  notation,  the governing equations 
can  be  written. 

and 
ah z + v  * (hV) =o 

where V is the vector velocity, h is the  height of the free 
surface, g is  gravity,  and V is the vector  gradient  operator. 
Equation (2) expresses conservation of mass. 

The momentum  equation  can  be  formed from equations 
(1) and (2); and, using diadic  notation,  can be written a.s 

Thus, neglecting boundary effects, the  system conserves 
momentum when integrated over the domain. The kinetic 
energy equation  is  obtained by combining equation (1) 

multiplied by h v  with  equation (2) multiplied by 2 V 0 V: 1 

This  equation,  together  with gh times  equation (2) yields 
the energy equation 

The  total energy 3 (V 0 vh+gh2) is seen to be conserved 

when integrated over the domain  with  boundary effects 
neglected. 

We now  wish to develop difference approximations to 
these partial differential equations  and  study  their 
properties.  Such  approximations  are easiest to develop 
from area  integrals of the flux form of the  equations. 
Consider integrals of equations (2) and (3) over some 
elementary  grid  area A yet to  be defined: 

1 

and 

The  area integrals on the  right-hand side can  be  trans- 
formed to line  integrals along the  boundary S of A :  

and 
2 at ShdA=-fVnhdS A 

S 

where V,, is the velocity  component  normal to  the curve S 
and n is the  outward  unit  vector  normal  to 8. The relation 
used to  transform the  gradient  term holds only in  Cartesian 
coordinates. In  spherical  coordinates, the pressure  gradient 
term  must  be handled differently. 

3. CONSERVATIVE  DIFFERENCE SCHEMES 

The difference schemes developed here  are all written 
for a topologically regular  grid in  the sense that each  grid 
point  is  surrounded by six triangles. Difference equations 
expressing the change of a  variable a t  a  grid  point are 
written using local polar indexing. The value of some 
variable II. a t  a  central  point is denoted by IL0. The values 
a t  surrounding  points are  then  denoted by $ t , j = $ ( ~ t ,  e,). 
The ri is the row radius of the  point; i=l  for a grid point 
one triangle from the center, 2 for a  point two triangles 
out, etc. The e, is the  azimuthal angle, j=1 for some 
reference line, 2 for  a  point 60” counterclockwise on  a 
topological map of the  grid, 3 for  a  point 120°, etc. See 
figure 1 .  

With  this  notation,  a  set of difference approximations 
to equations (8) and (9) conserving mass and  momentum 
is given by 

A, is the area of the hexagon whose sides go through 
(1/2, i) and  are  perpendicular to the grid lines, 6 i  is the 
length of the side through (l/2, i), nl/z,r: is the  outward 
unit vector  normal to the side, and Vn is the velocity 
component  normal to  the side. (VnhV) 1/2. p ,  (h2/2) 1/2, I, and 
( V , ~ ) I / ~ ,  are to  be related to grid-point  values from 
energy considerations. 

Let T denote  the finite-difference equivalent of inte- 
gration of a quantity J, over the domain, that is, 

where the  summation is taken over all grid points,  and 
A T  is the  total area. 

In  order for equations (10) and (11) to conserve energy, 
the following relations must hold 

l 6  6 5 %E &(Vnh)1/2,r:=x 6tvo 0 (VnhV1/2,;t (12) 
and 

I= 1 i = l  
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FIGURE 1.-Logical map of a triangular grid. 

The first  relation (12) insures that  the space -differences 
will not produce  nonlinear  instability; the second (13) 
provides for consistent conversion between  kinetic and 
potential energy. Equations (12) and (13) are  derived 
from (10) and (1 1) in  the following manner.  Split the  time 
derivative of the  product hVo in (10) into two parts  and 
substitute  equation (11). This  results  in an expression for 
hoaVo/at which is  then  dotted  with Vo. This  relation  is 
combined with  equation (11) multiplied by Vi/2 resulting 

in  an expression for - ho -O This  last expression is 

then combined with  equation (11) multiplied by ho. 
aa,( 3 

If we define 

(VnhV)I,, ,=$(VO+V,,  t)(VJ)l,2, i, (14) 
equation (12) holds because 

6 

C Vo *VI,  t(V&)1/2, t=O. 
1=1 

Differences with  the form of (14) have been used by 
Lorenz (1960), Arakawa (1966), and  Bryan (1966). 

One possible definition of (Vnh)112, is 

(Vh)l/z, t=$[hoVo+h,,  ,VI, (1 ~ I / z .  t .  (15) 

The energy conversion relation (13) then  holds provided 
that 

(h2)1/2. i'hdL1, t .  (16) 

Expressions (15) and (16) can be verified by  substitution 
into (13) and  rearranging  and simplifying, noting that 
5 6inl/2,,=0. Substitution of equations (14),  (15), and 

(16) into (10) and (11) results  in one energy conservative 
i = l  

difference scheme given as 
Scheme I-where 

nnd 

If applied to a  square  grid,  this  scheme is seen to  be  the 
same  as that used by Grimmer and  Shaw (1967) and  the 
same  as scheme B of Grammeltvedt (1969). 

A second possible definition of (Vnh)llz, is 

Relation (13) is now valid if 

Substitution of equations (14),  (18), and (19) into (10) 
and (11) results in a second energy  conservative scheme 
given by: 

Scheme II-where 

and (20) 

We  note that  the mass flux of scheme I is similar to  the 
semi-momentum scheme by  Shuman (1962) and that of 
scheme I1 is similar to  his filtered factor  form.  These  two 
schemes are also similar to those designed by  Kurihara 
and Holloway (1967) for use over a quasi-homogeneous 
spherical  grid. 

4. INDIVIDUAL  APPROXIMATIONS 

Difference approximations are now formulated for the 
individual  terms of the governing equations  without 
regard to  energy  conservation. First, grid vectors which 
are useful in writing the approximations are defined. 

Let S, be  the vector from the center  point 0 to the 
surrounding  point (1, i) (see  fig. 2A). The  radial  subscript 
is  now dropped, all points considered being in  the first 
row around the  center  point. 

Two  adjacent  points along with  the  center  point form a 
triangle  with  values #o, # t ,  and #t+l of some field # at  its 
vertices. If $ varies  linearly over this  triangle it can be 
written, following Winslow (1966), as 
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6 

FIGURE 2.-Grid vectors. 

where the  gradient is a  constant  within  the  triangle  and 
given by 

S is the position vector  with  respect to the center  point, 
and  the superscript T denotes  a 90° clockwise rotation 
of a  vector (fig. 2B). 

A proof of equation (22) is  straightforward. Since $ is 
assumed to vary linearly  in the triangle, it can be written 
in the following form: 

#=$o+ $ 0  [(#*-#o)f(% Si+,> + ($,+I --ILo)g(S,, $t+1)1 

where i? and g are vector  functions of S i  and St+,.  Since 
rF.~=#o+($i-#o), it  follows that S f o f f = O  and § * o g = O .  
Similarly, Ikt+l=$o+(#i+l-#o) implies Si+, ff=1 and 
Si+, 0 g=1. Thus, ff and g have  the  form f=c,§?+, and 
g= C&y where 

FIGURE 3.-Secondary dodecagonal grid area. 

PRESSURE GRADUENT TERM 

Consider the  integral of the pressure term over the 
dodecagonal grid  area of figure 3A, 

I - hVhdA, 
2 - J A  

and assume h varies linearly  within  each of the six grid 
triangles. The contribution  to  the  integral  from  the  area x formed by the intersection of one  grid  triangle  and the 
dodecagon is 

(ho+S 0 ~ h ) ( ~ h ) d X  

C,=-C2=[S, 0 s:+l]-l. where the position vector 8 is the only  variable in  the 

Define a secondary mesh for the grid to consist of the 
medians of the grid triangles (fig. 3 4 .  The  elementary I=vh{  ;&ho+vh 0 x s 1. 
grid  area associated with each grid point is then that of 
the secondary dodecagon surrounding it. 

integral.  Hence, 

- 
S is the average position vector of the  area x. 
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In  the grid triangle defined by S, and SI+ , ,  the area 3 
is that of the two triangles defined by - Si and - (Si+,+ 

S,), and ( S i + l + S i ) .  and 5 Si+l (see fig. 3B). In  these 

two triangles, JT S. is ". 

1 1 
2 3 

1 1 

and V h  J T S  is 

Thus, 

with  the  above  values  substituted. 

can be defined. Consider the  integral 
Similarly, other approximations to the pressure term 

and  let h2 vary linearly over the grid triangles. The 
integral  then becomes 

where the expression for the  gradient  is given by equa- 
tion (22). 

Another  approximation  can  be  formulated  from 

I,= j ;  n-ddS 

where h2 is assumed to vary linearly over grid triangles. 
In this case the line integral becomes simply the trape- 
zoidal rule  with  values at  the vertices of the dodecagon. 
The integral I4  can be evaluated  other  ways,  such as by 
assuming h varies  linearly over grid  triangles. The line 
integral does not reduce to the trapezoidal  rule in  this 
case. 

MASS FLUX 

Difference approximations for the mass flux term, 
right-hand  side of equation (23), are now considered: 

dh -=-$ at ( V h )  n dS. 

Let V h  vary linearly  within  grid  triangles. The two out- 
ward  normals along the two sides of the dodecagon (fig. 
3B) within the grid  triangle defined by S, and Si+, are 

given by 
1 
2 ST+,-- ST 

and 

- sy+l -ST 1 
2 nz= 

Substituting these expressions for n, and n2, plus  equa- 
tions (21) and (22) for V h  into  equation (23) along with 
some manipulation, leads to the difference equation 

Another  approximation  can be derived by assuming 
both h and V vary linearly over grid triangles  and  approx- 
imating  the line integral  in  equation (23) with  the  trape- 
zoidal rule  between  vertices of the dodecagon. This 
approximation becomes 

Other  approximations  can  be  found by making  assump- 
tions similar  to  those  made  in  approximating the pressure 
gradient  term. 

MOMENTUM FLUX 

Approximations  for the  momentum flux term on the 
right-hand  side of the following equation 

can be obtained using the same  methods  as  the  mass 
advection. For example, if VhV is assumed to  vary linearly 
within grid triangles, the resulting expression for equation 
(26) becomes 

By making  approximations  similar to those made for the 
mass flux, other difference schemes can  be  obtained. 

5. HOMOGENEOUS GRID 

We now consider the form these schemes take when 
applied to an equilateral  triangular (homogeneous) grid 
and  determine the  truncation  error of such  approxima- 
tions. Consider Cartesian  coordinates (x, y) with  unit 
vectors (i, j). Let 6 be the  constant  distance between grid 
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the scheme corresponding to the  interval I, is 

2=1 

The pressure gradient  term of scheme I1 and  the scheme 
corresponding to I3 both become 

P3=-g&('hO+ih()h* f=l 2 sf,  

and  that corresponding to I4 becomes 

P,=-gC~[(h~- ,+h:+h~)+(h:+h:+,+h~)l~,  0 1  s 
i=l 

which can  be shown to  be  the same as P,.  
A The mass flux scheme from the  right-hand  side of 

equation (24) when applied to  the homogeneous grid 
becomes 

FIQURE 4.-Homogeneous grid vectors. 1 6  Q1=--&htV,'Si. 

points,  and define the grid vectors S t  by 

SI=-- 1 &  si+ - sj ,  2 2  

s2="-1, 

1 & .  s3=-- si- - 61, 2 2  

1 J3 s -- si- - s j ,  
4-2 z 

$,=si, and 

1 J3 
$e=- si+ - sj .  2 2 

See figure 4. 

side of the  equation, 
Consider  first the pressure term on the  right-hand 

or an equivalent form. We denote discrete approximations 
to the  right-hand  side  as P,. 

Since 

ZS,=O 

nl, ,  t=s,dlSil, 

0 

i=l 
and 

the pressure gradient  term of scheme I can be written as 

The mass flux term of scheme I also reduces to this 
expression. The mass flux of scheme I1 becomes 

and  the  right-hand side of equation (25) reduces to 

The  momentum flux on  the  right-hand side of equation 
(27) when applied to  this  grid becomes 

while the  momentum flux of scheme I reduces to 

The momentum flux of scheme I1 becomes 

In  section 4, energy conservative schemes are developed. 
These energy conservation  conditions do not, however, 
require local accuracy. In  section 5, schemes are developed 
using methods which immediately  lead to consistent 
approximations. Again, however, it  does not necessarily 
follow that  the schemes are locally accurate.  Therefore, 
it is useful to examine the  truncation  errors of these 
schemes. 

The  truncation error of the approximations is deter- 
mined by substituting  Taylor's series expansions about  the 
center  point  into  the difference approximations and com- 
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paring the  result  with  the  continuous  term. Let 

and 

These expressions are  substituted  into schemes P,, Qx, 
and M,, and like powers of 6 are combined. Some relations 
prove  useful in simplifying these  combinations;  these  are 
listed in  the appendix. All are easily versed  by expansion 
into  Cartesian  components. 

Using  these  relations, the Taylor's series expansions of 
schemes P, simplify to 

These schemes are  all seen to be second order. 

schemes become 
The Taylor's series expansions of the mass  advection 

&1= - v (hV)o-62 g { v * V(VZh) +hv2(v V) 
1 

+ 2 ~ ~ h ~ ~ V + 2 v h ~ v ~ V + 4 v ~ [ ( v h ~ v ) V ] } , + 0 ( s ~ ) ,  

All of these schemes are seen to  be second order. 

of the form 
The expansions of the  momentum  advection  terms  are 

M,=-v ( V ~ V ) , + ~ ~ F , ( ~ ~ , V ~ ) + O ( ~ ~ ~ .  

The expressions F, (h,, V,) are  rather long and compli- 
cated  and  are  not given here. These schemes are also seen 
to  be second order. 

7. FOURTH-ORDER SCHEMES 

Straightforward  extrapolation  techniques  can be applied 
to  the second-order schemes derived  above to obtain 

term  from the conservative scheme (17) 

where we have resumed the use of the  radial  subscript. 
If this scheme is  applied to  the triangles  formed by  the 
points h2,, with h,, the approximation  is t,he same  as P1 
except 6 is replaced by 26 and Si by 2 S i .  Hence, we have 
a scheme 

with  a  Taylor's series expansion 

These two schemes can  then  be combined in  the form 
PT=AP1+BP{, where A and B are  found by requiring 
that  the coefficient of a2 in  the  Taylor expansion of 
P: be zero and  the coefficient of " g h v h  be 1.  The solution 
isA=4/3, B= -1/3, and  the  fourth-order  approximation is 

This same  extrapolation can  be applied to all the  terms 
of the energy  conservative scheme (17). Such  a  fourth- 
order scheme is also energy conservative since each of its 
two parts are. 

Another possibility is to  use the  points 2, i+- 

rather  than (2, i). These  are closer to  the  center  point 
than  the points (2, i), and  are  not  lined  up  with  the  points 
(1, i); and hence  they  might make a better approximation. 
In  this case 6 in  the  truncation error is replaced by 43 6, 
and  the  combination coefficients become A=3/2 and 
B= - 112. The fourth-order  energy  conservative  scheme 
corresponding to (17) is given by : 

( 6) 

Scheme III-where 

8. BOUNDARY  CONDITIONS 

We nom consider the  lateral  boundary  condition for 
an inviscid fluid when the  boundary  is  a  straight  line 
coinciding with  the sides of grid triangles. The boundary 
condition for the continuous  equations is that there  should 

fourth-order schemes. For example, consider the pressure be no  normal flow across the boundary. 
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FIGURE 5.-Boundary grid points. 

Denote  the  tangential  and  normal components of the 
velocity V by u and 11, respectively. Define a row of grid 
points  outside the  boundary  to  be  the  mirror image of 
the first row of points inside the  boundary (fig. 5 ) .  Define 
n subscript (i, j )  such that j = B if the  point  is on the 
boundary, j = B+1 ( j  = B-1) if the  point is in  the 
first row inside (outside) the  boundary,  and i is an 
index along the  boundary from some reference point. 
These  subscripts, applied to the components u, v ,  and 
h should not be confused with  the  radial,  azimuthal 
subscripts applied to the vectors. 

With this  notation,  the  discrete  boundary  condition 
becomes = 0. If we define 

hl,B-l=hi. B+1, 

and 

difference equations of the form (lo), (11) applied to 
the  boundary  points  result  in 

if (VnhV) 1/2. 2, (h2/2)1,2, 2, and (V&) I / ~ ,  are  evaluated using 
only values a t  (0) and (1,i). Thus if v ~ , ~  is initially  zero, 
it will remain zero. It is also seen that  the area-weighted 
averages of mass and  momentum over the domain  me 
conserved when the  boundary values are weighted by 
that  part of their grid area inside the doma'in  and that  the 
energy conserving schemes (17) and (30) continue  to 
conserve energy using these  boundary conditions. 

These  boundary  conditions hold only  for  pure gravity 
wave motions associated with  equations (1) and (2). 

When the Coriolis term is included in  the governing 
equations, the  boundary  conditions  are no longer exact. 
Since the  initial  conditions  for  the  test cases presented 
here are  such that there is very  little  motion  near  the 
boundary  and since the  integrations  are  carried  out for n 
relatively short time, little trouble is expected in using 
these  boundary  conditions. 

9. NUMERICAL IblTEGRATIONS 

Ten-day  integrations were performed using several of 
the schemes developed here over an equilateral  triangular 
grid on a beta plane. The Coriolis term was differenced 
by simply using the value of the velocity at  the  central 
point,  thus  the schemes remain  energy  conservative. 
When  conservative scheme (17) is applied to  the  right 
triangles corresponding to  a  square  net of points, it  is 
seen to be  the  same as scheme B of Grammeltvedt (1969). 
For this  reason it was decided to use the same  initial 
conditions  as  he used. A direct comparison between  four- 
and six-point differences is then possible. His  initial 
condition I is given by 

h(z,y)=Ho+Hl tanh ~ 9(goO--?/) +Hz sech2 ___ ~(Yo-Y)  sin (F) 
where x is the  eastward  coordinate, y the  northward, 
yo the  center of the channel, L the  length of the channel, 
and D the  width. The initial velocity fields are  msumed 
to  be geostrophic. 

The following values we adopted for the  constants: 

2 0  D 

H0=2000 m, L=6000 km, 

H,=220 m, D= 43 X 2600 k m ,  
H2=133  m, f = W 4  sec-', 

g-10 m sec-', p=lO-" sec-'  m-l. 

The  length 6 of the sides of the  equilateral  triangles 
forming the grid mas taken  to  be either 100, 200, 231, 
or 270 km.  The  north-south  boundary conditions are 
equation (30) with  the  additional  requirement that 11 on 
the  boundary  be held a t  zero. These  are  equivalent t o  
those used by Grammeltvedt (1969). The east-west 
boundary  conditions  are cyclic. A 10-min time  step is 
used when 6 equals 200 km or more, and a 5-min stop 
when 6 equals 100 km.  Figure 6 shows the  initial height, 
field. 

The height fields after 5 days for  eight different cases 
are shown in figure 7. The top  left is obtained by Gram- 
meltvedt's square scheme F using a fine mesh with S 
equal to 100 km,  and  the  top  right is due to scheme T 
also using a fine mesh with 6 equal to 100 km. Since these 
two solutions are almost  identical, me can assume they 
represent the correct  solution. The scheme used for the 
left of the second row is  Grammeltvedt's  square  scheme 
B with a coarser resolution of 6 equal  to 200 km,  and  the 
scheme used for the  right is triangular scheme I with 
the same  value of 6. The triangular  scheme is seen to  
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FIGURE 6.-Initial height field; heights in meters; contour  interval, 
500 m. 

be better  than  the  square scheme. Both  the phase  error 
and  amplitude  errors  are less for the former. 

From these results it is not clear whether or not  the 
triangular scheme is better because it  has slightly better 
resolution in  the y-direction. Since the base of a  grid 
triangle is the  same  length as a side of the  square  grid, 
the  height of the triangles is less than that of the  squares, 
resulting in more  grid  points in  thc y-direction in  the 
triangular  grid  than  in  the  square grid. T o  determine 
the effect of this difference in resolution, the  triangular 
scheme was integrated over a grid with  the  height of the 
triangles  equal to 200 km, or 6 approximately  equal to  
231 km.  The  results  are presented  on the  right side of 
the  third row of figure 7. The solution hardly differs 
from the case in which 6 equals 200 km  and is  again 
better  than  the  square scheme. Scheme I was integrated 
with an even coarser  resolution of 6 approximately 273 km. 
The result is on  the  left of the  third row of figure 7 .  This 
solution is seen to  be a t  least, as good as that for  the  square 
scheme B. Thus, we conclude that  the slightly  better res- 
olution in  the y-direction of the  triangular schemes is 
not  the  main reason for their better solutions. 

The  bottom  right of figure 7 is  obtained  from  triangular 
scheme 11. The field is  seen to  be  almost  identical to  that 
of scheme I. The lower left  is  due to  fourth-order  triangular 
scheme 111. The phase and  amplitude  have  very  little 
error  when  compared  with the fine resolution  results. If 
the fourth-order scheme I11 is compared  with  Gram- 
meltvedt’s  fourth-order  square scheme J (his fig. s), the 
triangular  scheme is again seen t’o be better. 

Figure 8 shows the  height fields after 10 days. Nom the 
solutions of the two  fine  resolution schemes are beginning 
to diverge. The main  feature is wave number 2. The  tri- 
angular schemes all exhibit  this  wave  number 2 much 
better  than  the  square scheme B.  The phase  error of the 
fourth-order scheme is  less than  the second-order schemes 
and is also less than  the phase  error for Grammelvedt’s 

Square Scheme F, 8. lOOkm 

Square Scheme 8,  8: 200km 

F--------”T 

!;:?-FA 
Triangular  Scheme 111, 8. 200km 
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Triangular  Scheme I, 8. lOOkm 

t ” - - - ” - - 7  Triangular  Scheme I, 85 200km 

1 - V  Triangular Scheme I, 8. 231km 

Triangular Scheme 11, 8: 200km 

FIGURE 7.-Height fields after 5 days; heights in meters; contour 
interval, 500 m; see section 9 for  explanation. 

fourth-order  square scheme J as seen in his figure 8. These 
schemes can  ‘also be compared  with  Shuman’s scheme 
(Grammeltvedt’s fig. 9) which is seen to  have a  much 
greater  phase  truncation  error. 

10. CONCLUSIONS 

The schemes compared  here  indicate that, for numerical 
modeling of atmospherelike fluid flow, homogeneous tri- 
angular difference approximations  provide better solutions 
than homogeneous square  approximations  with  similar 
resolution  and the same  order of truncation  error. 

It should be pointed out  that  the  triangular schemes 
require  slightly more computer  time  than  the  square 
schemes if both grids  contain  the same  number of grid 
points.  This follows from the  fact  that  the number of 
computations  required  to  calculate  the  time  derivatives 
depends on the number of grid points  times the  number of 
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Sauare Scheme 8 .  8= 200km 

~ Triangular  Scheme I .  8. 273km 
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MONTHLY WEATHER  REVIEW 

Triangular Scheme I, I ) =  100km 

L - y * " , I j  

Trianaular Scheme 1. 8:  231km 

Triangular  Scheme 11, 8: 20Okm 

FIGURE 8.-Height fields after 10 days; heights in meters;  contour 
interval, 500 m; see  section 9 for explanation. 

surrounding  points.  The  actual  computer times needed 
to integrate,  say, scheme I and scheme B for the  same  grid 
interval were almost the same. Since a  triangular  grid 
integrated over a coarser grid produces as good a result 
as a square scheme over a less coarse grid,  the  triangular 
schemes actually  produce  a  saving of computer  time  for  the 
same  quality of solution. 

APPENDIX 
RELATIONS USED TO  SIMPLIFY  TRUNCATION  ERROR 

EXPRESSIONS (SEE SECTION 6) 

Relation 1 - 

1 6  - (S, 0 ~)~h,,s,=O for even k ,  362 d=1 

=vk for k=l, 

=- 82v(v2ho) for k=3, 3 
4 

- <0(6'-l) for odd k>3, 

vel. 91, No. 4 2 

and 
1 6  
- (s, V)kVo * Si=O for even k, 362 i = l  

=V Vo for k=1, 

=? a2v (v2V)  for k=3, 

l O ( S k " ' )  for odd k>3. 
4 

Relation 2- 

%k#O 

and 

Relation 3- 

and 
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